Basic category theory
Leinster, Tom.
Basic category theory Tom Leinster. - Cambridge: Cambridge University Press, 2017. - viii, 183 pages : illustrations ; 24 cm. - Cambridge studies in advanced mathematics ; 143 . - Cambridge studies in advanced mathematics ; 143. .
Includes bibliographical references (pages 174-176) and index.
Categories, functors and natural transformations -- Adjoints -- Interlude on sets -- Representables -- Limits -- Adjoints, representables and limits -- Appendix: Proof of the general adjoint functor theorem.
"At the heart of this short introduction to category theory is the idea of a universal property, important throughout mathematics. After an introductory chapter giving the basic definitions, separate chapters explain three ways of expressing universal properties: via adjoint functors, representable functors, and limits. A final chapter ties all three together."--
9781107044241 (Hbk) 1107044243
2014451716
GBB483444 bnb
016817752 Uk
Categories (Mathematics)
Categories (Mathematics)
QA169 / .L438 2014
512.62 L533B
Basic category theory Tom Leinster. - Cambridge: Cambridge University Press, 2017. - viii, 183 pages : illustrations ; 24 cm. - Cambridge studies in advanced mathematics ; 143 . - Cambridge studies in advanced mathematics ; 143. .
Includes bibliographical references (pages 174-176) and index.
Categories, functors and natural transformations -- Adjoints -- Interlude on sets -- Representables -- Limits -- Adjoints, representables and limits -- Appendix: Proof of the general adjoint functor theorem.
"At the heart of this short introduction to category theory is the idea of a universal property, important throughout mathematics. After an introductory chapter giving the basic definitions, separate chapters explain three ways of expressing universal properties: via adjoint functors, representable functors, and limits. A final chapter ties all three together."--
9781107044241 (Hbk) 1107044243
2014451716
GBB483444 bnb
016817752 Uk
Categories (Mathematics)
Categories (Mathematics)
QA169 / .L438 2014
512.62 L533B