Deep learning

Goodfellow, Ian

Deep learning Ian Goodfellow, Yoshua Bengio, and Aaron Courville. - Cambridge: The MIT Press, 2016. - xxii, 775 pages : illustrations (some color) ; 24 cm. - Adaptive computation and machine learning .

Includes bibliographical references (pages 711-766) and index.

Applied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models.

9780262035613 (hardcover : alk. paper) 0262035618 (hardcover : alk. paper) = EECS-Reference book collection

2016022992


Machine learning,

Q325.5 / .G66 2016

006.31 G61D



Contact for Queries: skpathak@iiserb.ac.in