Topology.
Munkres, James.
Topology. - 2nd ed. - 1 online resource (508 pages)
Cover -- Table of Contents -- Chapter 1. Set Theory and Logic -- Chapter 2. Topological Spaces and Continuous Functions -- Chapter 3. Connectedness and Compactness -- Chapter 4. Countability and Separation Axioms -- Chapter 5. The Tychonoff Theorem -- Chapter 6. Metrization Theorems and Paracompactness -- Chapter 7. Complete Metric Spaces and Function Spaces -- Chapter 8. Baire Spaces and Dimension Theory -- Chapter 9. The Fundamental Group -- Chapter 10. Separation Theorems in the Plane -- Chapter 11. The Seifert-van Kampen Theorem -- Chapter 13. Classification of Covering Spaces -- Chapter 12. Classification of Surfaces -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- X -- Y -- Z.
For a senior undergraduate or first year graduate-level course in Introduction to Topology. Appropriate for a one-semester course on both general and algebraic topology or separate courses treating each topic separately.This text is designed to provide instructors with a convenient single text resource for bridging between general and...
9781292036786
Topology.
Electronic books.
QA611 .M865 2014
514
Topology. - 2nd ed. - 1 online resource (508 pages)
Cover -- Table of Contents -- Chapter 1. Set Theory and Logic -- Chapter 2. Topological Spaces and Continuous Functions -- Chapter 3. Connectedness and Compactness -- Chapter 4. Countability and Separation Axioms -- Chapter 5. The Tychonoff Theorem -- Chapter 6. Metrization Theorems and Paracompactness -- Chapter 7. Complete Metric Spaces and Function Spaces -- Chapter 8. Baire Spaces and Dimension Theory -- Chapter 9. The Fundamental Group -- Chapter 10. Separation Theorems in the Plane -- Chapter 11. The Seifert-van Kampen Theorem -- Chapter 13. Classification of Covering Spaces -- Chapter 12. Classification of Surfaces -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- X -- Y -- Z.
For a senior undergraduate or first year graduate-level course in Introduction to Topology. Appropriate for a one-semester course on both general and algebraic topology or separate courses treating each topic separately.This text is designed to provide instructors with a convenient single text resource for bridging between general and...
9781292036786
Topology.
Electronic books.
QA611 .M865 2014
514