How to prove it : a structured approach Daniel J. Velleman (Amherst College, Massachusetts).
Publication details: Cambridge: Cambridge University Press, 2023.Edition: Third editionDescription: xii, 458pISBN:- 9781108439534 (pbk. : alk. paper)
- 511.3 V54H3 23
- QA9 .V38 2019
Contents:
Introduction -- Sentential logic -- Quantificational logic -- Proofs -- Relations -- Functions -- Mathematical induction -- Number theory -- Infinite sets -- Appendix.
Item type | Current library | Collection | Call number | Status | Notes | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
![]() |
Central Library, IISER Bhopal Reference Section | Reference | 511.3 V54H3 (Browse shelf(Opens below)) | Not For Loan | Title recommended by Dr Ankur Raina | 11756 | ||
![]() |
Central Library, IISER Bhopal General Section | 511.3 V54H3 (Browse shelf(Opens below)) | Available | 11757 |
Browsing Central Library, IISER Bhopal shelves, Shelving location: Reference Section, Collection: Reference Close shelf browser (Hides shelf browser)
No cover image available | ||||||||
511.3 C917L Logical Introduction to Proof | 511.3 D54G Graph drawing : | 511.3 St35M2 More precisely : | 511.3 V54H3 How to prove it : a structured approach | 511.326 Sm6G Generalized linear models for categorical and continuous limited dependent variables | 511.35 D84M Modern applications of automata theory | 511.35 H77I3 Introduction to automata theory, languages and computation |
Includes index.
Introduction -- Sentential logic -- Quantificational logic -- Proofs -- Relations -- Functions -- Mathematical induction -- Number theory -- Infinite sets -- Appendix.
There are no comments on this title.
Log in to your account to post a comment.