Image from Google Jackets

Introduction to Lie Algebras and Representation Theory [electronic resource] / by J.E. Humphreys.

By: Contributor(s): Series: Graduate Texts in Mathematics ; 9Publisher: New York, NY : Springer New York : Imprint: Springer, 1972Edition: 1st ed. 1972Description: XIII, 173 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781461263982
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 512 23
LOC classification:
  • QA150-272
Online resources:
Contents:
I. Basic Concepts -- 1. Definitions and first examples -- 2. Ideals and homomorphisms -- 3. Solvable and nilpotent Lie algebras -- II. Semisimple Lie Algebras -- 4. Theorems of Lie and Cartan -- 5. Killing form -- 6. Complete reducibility of representations -- 7. Representations of sl (2, F) -- 8. Root space decomposition -- III. Root Systems -- 9. Axiomatics -- 10. Simple roots and Weyl group -- 11. Classification -- 12. Construction of root systems and automorphisms -- 13. Abstract theory of weights -- IV. Isomorphism and Conjugacy Theorems -- 14. Isomorphism theorem -- 15. Cartan subalgebras -- 16. Conjugacy theorems -- V. Existence Theorem -- 17. Universal enveloping algebras -- 18. The simple algebras -- VI. Representation Theory -- 20. Weights and maximal vectors -- 21. Finite dimensional modules -- 22. Multiplicity formula -- 23. Characters -- 24. Formulas of Weyl, Kostant, and Steinberg -- VII. Chevalley Algebras and Groups -- 25. Chevalley basis of L -- 26. Kostant's Theorem -- 27. Admissible lattices -- References -- Afterword (1994) -- Index of Terminology -- Index of Symbols.
In: Springer Nature eBookSummary: This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor­ porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
E-Books E-Books Central Library, IISER Bhopal Not for loan

I. Basic Concepts -- 1. Definitions and first examples -- 2. Ideals and homomorphisms -- 3. Solvable and nilpotent Lie algebras -- II. Semisimple Lie Algebras -- 4. Theorems of Lie and Cartan -- 5. Killing form -- 6. Complete reducibility of representations -- 7. Representations of sl (2, F) -- 8. Root space decomposition -- III. Root Systems -- 9. Axiomatics -- 10. Simple roots and Weyl group -- 11. Classification -- 12. Construction of root systems and automorphisms -- 13. Abstract theory of weights -- IV. Isomorphism and Conjugacy Theorems -- 14. Isomorphism theorem -- 15. Cartan subalgebras -- 16. Conjugacy theorems -- V. Existence Theorem -- 17. Universal enveloping algebras -- 18. The simple algebras -- VI. Representation Theory -- 20. Weights and maximal vectors -- 21. Finite dimensional modules -- 22. Multiplicity formula -- 23. Characters -- 24. Formulas of Weyl, Kostant, and Steinberg -- VII. Chevalley Algebras and Groups -- 25. Chevalley basis of L -- 26. Kostant's Theorem -- 27. Admissible lattices -- References -- Afterword (1994) -- Index of Terminology -- Index of Symbols.

This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor­ porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.

There are no comments on this title.

to post a comment.



Contact for Queries: skpathak@iiserb.ac.in