000 | 04174pam a22003731i 4500 | ||
---|---|---|---|
001 | 020164883 | ||
003 | OSt | ||
005 | 20230811114440.0 | ||
006 | m || d | | ||
007 | cr ||||||||||| | ||
008 | 210409s2021 flua o 000|0|eng|d | ||
015 |
_aGBC161726 _2bnb |
||
020 | _z9781032218588 (pbk.) | ||
024 | 7 |
_a10.1201/9781351663212 _2doi |
|
037 |
_a9781351663205 _bIngram Content Group |
||
040 |
_aStDuBDS _beng _cIISERB _dUk _erda _epn |
||
042 | _aukblsr | ||
082 | 0 | 4 |
_a530.11 D79G2 _223 |
100 | 1 |
_aDray, Tevian. _929639 |
|
245 | 1 | 4 |
_aGeometry of special relativity _cTevian Dray. |
250 | _aSecond edition. | ||
260 |
_aOxon: _bCRC Press, _c2022. |
||
300 |
_axx, 174p. _billustrations (black and white). |
||
490 | 0 | _aAdvances in applied mathematics | |
500 | _aPrevious edition: 2012. | ||
505 | 0 | _a<P><STRONG>1. Introduction.</STRONG> 1.1 Newton’s Relativity. 1.2. Einstein’s Relativity. <STRONG>2. The Physics of Special Relativity.</STRONG> 2.1. Observers and Measurement. 2.2. The Postulates of Special Relativity. 2.3. Time Dilation and Length Contraction. 2.4. Lorentz Transformations. 2.5. Addition of Velocities. 2.6. The Interval. <STRONG>3. Circle Geometry. </STRONG>3.1. The Geometry of Trigonometry. 3.2. Distance. 3.3. Circle Trigonometry. 3.4. Triangle Trigonometry. 3.5. Rotations. 3.6. Projections. 3.7. Addition Formulas. <STRONG>4. Hyperbola Geometry.</STRONG> 4.1. Hyperbolic Trigonometry. 4.2 Distance. 4.3. Hyperbola Trigonometry. 4.4. Triangle Trigonometry. 4.5. Rotations. 4.6. Projections. 4.7. Addition Formulas. 4.8. Combining Circle and Hyperbola Trigonometry. <STRONG>5. The Geometry of Special Relativity. </STRONG>5.1. The Surveyors. 5.2. Spacetime Diagrams. 5.3. Lorentz Transformations. 5.4. Space and Time. 5.5. The Geometry of Lorentz Transformations. 5.6. Dot Product. <STRONG>6. Applications.</STRONG> 6.1. Drawing Spacetime Diagrams. 6.2. Addition of Velocities. 6.3. Length Contraction. 6.4. Time Dilation. 6.5. Doppler Shift. <STRONG>7. Problems I.</STRONG> 7.1. Warmup. 7.2. Practice. 7.3. The Getaway. 7.4. Angles Are Not Invariant. 7.5. Interstellar Travel. 7.6. Observation. 7.7 Cosmic Rays. 7.8. Doppler Effect. <STRONG>8. Paradoxes.</STRONG> 8.1. Special Relativity Paradoxes. 8.2. The Pole and Barn Paradox. 8.3. The Twin Paradox. 8.4. Manhole Covers. <STRONG>9. Relativistic Mechanics.</STRONG> 9.1. Proper Time. 9.2. Velocity. 9.3. Conservation Laws. 9.4. Energy. 9.5. Useful Formulas. 9.6. Higher Dimensions. <STRONG>10. Problems II.</STRONG> 10.1. Mass Isn’t Conserved. 10.2. Identical Particles. 10.3. Pion Decay I. 10.4. Mass and Energy. 10.5. Pion Decay II. <STRONG>11. Relativistic Electromagnetism.</STRONG> 11.1. Magnetism from Electricity. 11.2. Lorentz Transformations. 11.3. Vectors. 11.4. Tensors. 11.5. The Electromagnetic Field. 11.6. Maxwell’s Equations. 11.7. The Unification of Special Relativity. <STRONG>12. Problems III.</STRONG> 12.1. Vanishing Fields. 12.2. Parallel and Perpendicular Fields. <STRONG>13. Beyond Special Relativity.</STRONG> 13.1. Problems with Special Relativity. 13.2. Tidal Effects. 13.3. Differential Geometry. 13.4. General Relativity. 13.5. Uniform Acceleration and Black Holes. <STRONG>14. Three-Dimensional Spacetime Diagrams.</STRONG> 14.1. Introduction. 14.2. The Rising Manhole. 14.3. The Moving Spotlight. 14.4. The Lorentzian Inner Product. 14.5. Transverse Directions. <STRONG>15. Minkowski Area via Light Boxes.</STRONG> 15.1. Area in Special Relativity. 15.2. Measuring with Light Boxes. <STRONG>16. Hyperbolic Geometry.</STRONG> 16.1. Non-Euclidean Geometry. 16.2. The Hyperboloid. 16.3. The Poincaré Disk. 16.4. The Klein Disk. 16.5. The Pseudosphere.<STRONG> 17. Calculus.</STRONG> 17.1. Circle Trigonometry. 17.2. Hyperbolic Trigonometry. 17.3. Exponentials (and Logarithms). <STRONG>Bibliography. Index.</STRONG></P><P></P> | |
650 | 0 |
_aSpecial relativity (Physics) _929640 |
|
650 | 0 |
_aSpace and time _xMathematical models. _929641 |
|
776 | 0 | 8 |
_iPrint version : _z9781032008202 |
903 | _aELD.DS.611682 | ||
942 |
_2ddc _cBK |
||
999 |
_c10120 _d10120 |