000 02967cam a22003617a 4500
001 18087639
003 OSt
005 20240509144548.0
008 140331t20142014nyu b 001 0 eng d
010 _a 2014936970
020 _a9781493908318 (alk. paper)
020 _a1493908316 (alk. paper)
020 _z9781493908325 (ebook)
035 _a(OCoLC)ocn871318852
040 _aYDXCP
_beng
_cIISERB
042 _alccopycat
050 0 0 _aQA247.5
_b.M87 2014
082 _223
_a510 M96T
100 1 _aMurty, Maruti Ram.
_930095
245 1 0 _aTranscendental numbers
_cM. Ram Murty, Purusottam Rath.
260 _aNew York:
_bSpringer,
_c2014.
300 _axiv, 217 pages ;
_c24 cm
504 _aIncludes bibliographical references (pages 205-213) and index.
505 0 _a1. Liouville's theorem -- 2. Hermite's theorem -- 3. Lindemann's theorem -- 4. The Lindemann-Weierstrass theorem -- 5. The maximum modulus principle and its applications -- 6. Siegel's lemma -- 7. The six exponentials theorem -- 8. Estimates for derivatives -- 9. The Schneider-Lang theorem -- 10. Elliptic functions -- 11. Transcendental values of elliptic functions -- 12. Periods and quasiperiods -- 13. Transcendental values of some elliptic integrals -- 14. The modular invariant -- 15. Transcendental values of the j-function -- 16. More elliptic integrals -- 17. Transcendental values of Eisenstein series -- 18. Elliptic integrals and hypergeometric series -- 19. Baker's theorem -- 20. Some applications of Baker's theorem -- 21. Schanuel's conjecture -- 22. Transcendental values of some Dirichlet series -- 23. The Baker-Birch-Wirsing theorem -- 24. Transcendence of some infinite series -- 25. Linear independence of values of Dirichlet L-functions -- 26. Transcendence of values of class group L-functions -- 27. Transcendence of values of modular forms -- 28. Periods, multiple zeta functions and [zeta](3).
520 3 _aThis book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker's theorem, Schanuel's conjecture, and Schneider's theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.--
650 0 _aTranscendental numbers.
_930096
650 7 _aTranscendental numbers.
_2fast
_930096
700 1 _aRath, Purusottam.
_930097
906 _a7
_bcbc
_ccopycat
_d2
_eepcn
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c10272
_d10272