000 01944cam a22003618i 4500
001 22452704
003 OSt
005 20240619151254.0
006 m |o d |
007 cr_|||||||||||
008 220112s2022 nju ob 001 0 eng
010 _a 2022000564
020 _z9781119750727
_q(hardback)
040 _aDLC
_beng
_cIISERB
_erda
042 _apcc
050 0 0 _aQA76.889
082 0 0 _a006.3843 St24P
_223/eng/20220304
100 1 _aStancil, Daniel D.
_930445
245 1 0 _aPrinciples of superconducting quantum computers
_cDaniel D. Stancil, North Carolina State University, Raleigh, North Carolina, Gregory T. Byrd, North Carolina State University, Raleigh, North Carolina.
250 _aFirst edition.
260 _aHoboken:
_bJohn Wiley & Sons,
_c2022.
263 _a2204
300 _axxxi, 346p.
504 _aIncludes bibliographical references and index.
520 _a"Digital systems that are most familiar are based on binary digits, or "bits." Each bit can take on either the value "1" or "0", and any arbitrary data can be represented by such a binary representation. In addition, any arbitrary logical operation can be implemented using bits. The text refers to these familiar systems as "classical" systems, since they are governed by the everyday laws of classical physics. Quantum computing is different from classical computing in a number of significant ways, as discussed in 'Principles of superconducting quantum computers'"--
650 0 _aQuantum computers.
_930446
650 0 _aSuperconducting quantum interference devices.
_930447
700 1 _aByrd, Gregory T.
_930448
776 0 8 _iPrint version:
_aStancil, Daniel D.
_tPrinciples of superconducting quantum computers
_bFirst edition.
_dHoboken, NJ, USA : John Wiley & Sons, Inc., 2022
_z9781119750727
_w(DLC) 2022000563
906 _a7
_bcbc
_corignew
_d1
_eecip
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c10356
_d10356