000 | 01944cam a22003618i 4500 | ||
---|---|---|---|
001 | 22452704 | ||
003 | OSt | ||
005 | 20240619151254.0 | ||
006 | m |o d | | ||
007 | cr_||||||||||| | ||
008 | 220112s2022 nju ob 001 0 eng | ||
010 | _a 2022000564 | ||
020 |
_z9781119750727 _q(hardback) |
||
040 |
_aDLC _beng _cIISERB _erda |
||
042 | _apcc | ||
050 | 0 | 0 | _aQA76.889 |
082 | 0 | 0 |
_a006.3843 St24P _223/eng/20220304 |
100 | 1 |
_aStancil, Daniel D. _930445 |
|
245 | 1 | 0 |
_aPrinciples of superconducting quantum computers _cDaniel D. Stancil, North Carolina State University, Raleigh, North Carolina, Gregory T. Byrd, North Carolina State University, Raleigh, North Carolina. |
250 | _aFirst edition. | ||
260 |
_aHoboken: _bJohn Wiley & Sons, _c2022. |
||
263 | _a2204 | ||
300 | _axxxi, 346p. | ||
504 | _aIncludes bibliographical references and index. | ||
520 | _a"Digital systems that are most familiar are based on binary digits, or "bits." Each bit can take on either the value "1" or "0", and any arbitrary data can be represented by such a binary representation. In addition, any arbitrary logical operation can be implemented using bits. The text refers to these familiar systems as "classical" systems, since they are governed by the everyday laws of classical physics. Quantum computing is different from classical computing in a number of significant ways, as discussed in 'Principles of superconducting quantum computers'"-- | ||
650 | 0 |
_aQuantum computers. _930446 |
|
650 | 0 |
_aSuperconducting quantum interference devices. _930447 |
|
700 | 1 |
_aByrd, Gregory T. _930448 |
|
776 | 0 | 8 |
_iPrint version: _aStancil, Daniel D. _tPrinciples of superconducting quantum computers _bFirst edition. _dHoboken, NJ, USA : John Wiley & Sons, Inc., 2022 _z9781119750727 _w(DLC) 2022000563 |
906 |
_a7 _bcbc _corignew _d1 _eecip _f20 _gy-gencatlg |
||
942 |
_2ddc _cBK |
||
999 |
_c10356 _d10356 |