000 | 02113cam a22004097i 4500 | ||
---|---|---|---|
001 | 18532628 | ||
003 | OSt | ||
005 | 20240912165933.0 | ||
008 | 150319s2014 enka b 001 0 eng d | ||
010 | _a 2014451716 | ||
015 |
_aGBB483444 _2bnb |
||
016 | 7 |
_a016817752 _2Uk |
|
020 | _a9781107044241 (Hbk) | ||
020 | _a1107044243 | ||
035 | _a(OCoLC)ocn879601881 | ||
040 |
_aBTCTA _beng _cIISERB _erda |
||
042 | _alccopycat | ||
050 | 0 | 0 |
_aQA169 _b.L438 2014 |
082 | 0 | 0 |
_a512.62 L533B _223 |
100 | 1 |
_aLeinster, Tom. _930858 |
|
245 | 1 | 0 |
_aBasic category theory _cTom Leinster. |
260 |
_aCambridge: _bCambridge University Press, _c2017. |
||
300 |
_aviii, 183 pages : _billustrations ; _c24 cm. |
||
490 | 1 |
_aCambridge studies in advanced mathematics ; _v143 |
|
504 | _aIncludes bibliographical references (pages 174-176) and index. | ||
505 | 0 | _aCategories, functors and natural transformations -- Adjoints -- Interlude on sets -- Representables -- Limits -- Adjoints, representables and limits -- Appendix: Proof of the general adjoint functor theorem. | |
520 | _a"At the heart of this short introduction to category theory is the idea of a universal property, important throughout mathematics. After an introductory chapter giving the basic definitions, separate chapters explain three ways of expressing universal properties: via adjoint functors, representable functors, and limits. A final chapter ties all three together."-- | ||
650 | 0 |
_aCategories (Mathematics) _930859 |
|
650 | 7 |
_aCategories (Mathematics) _2fast _930859 |
|
830 | 0 |
_aCambridge studies in advanced mathematics ; _v143. _930860 |
|
856 | 4 | 2 |
_3Contributor biographical information _uhttp://www.loc.gov/catdir/enhancements/fy1512/2014451716-b.html |
856 | 4 | 2 |
_3Publisher description _uhttp://www.loc.gov/catdir/enhancements/fy1512/2014451716-d.html |
856 | 4 | 1 |
_3Table of contents only _uhttp://www.loc.gov/catdir/enhancements/fy1512/2014451716-t.html |
906 |
_a7 _bcbc _ccopycat _d2 _encip _f20 _gy-gencatlg |
||
942 |
_2ddc _cBK |
||
999 |
_c10447 _d10447 |