000 02113cam a22004097i 4500
001 18532628
003 OSt
005 20240912165933.0
008 150319s2014 enka b 001 0 eng d
010 _a 2014451716
015 _aGBB483444
_2bnb
016 7 _a016817752
_2Uk
020 _a9781107044241 (Hbk)
020 _a1107044243
035 _a(OCoLC)ocn879601881
040 _aBTCTA
_beng
_cIISERB
_erda
042 _alccopycat
050 0 0 _aQA169
_b.L438 2014
082 0 0 _a512.62 L533B
_223
100 1 _aLeinster, Tom.
_930858
245 1 0 _aBasic category theory
_cTom Leinster.
260 _aCambridge:
_bCambridge University Press,
_c2017.
300 _aviii, 183 pages :
_billustrations ;
_c24 cm.
490 1 _aCambridge studies in advanced mathematics ;
_v143
504 _aIncludes bibliographical references (pages 174-176) and index.
505 0 _aCategories, functors and natural transformations -- Adjoints -- Interlude on sets -- Representables -- Limits -- Adjoints, representables and limits -- Appendix: Proof of the general adjoint functor theorem.
520 _a"At the heart of this short introduction to category theory is the idea of a universal property, important throughout mathematics. After an introductory chapter giving the basic definitions, separate chapters explain three ways of expressing universal properties: via adjoint functors, representable functors, and limits. A final chapter ties all three together."--
650 0 _aCategories (Mathematics)
_930859
650 7 _aCategories (Mathematics)
_2fast
_930859
830 0 _aCambridge studies in advanced mathematics ;
_v143.
_930860
856 4 2 _3Contributor biographical information
_uhttp://www.loc.gov/catdir/enhancements/fy1512/2014451716-b.html
856 4 2 _3Publisher description
_uhttp://www.loc.gov/catdir/enhancements/fy1512/2014451716-d.html
856 4 1 _3Table of contents only
_uhttp://www.loc.gov/catdir/enhancements/fy1512/2014451716-t.html
906 _a7
_bcbc
_ccopycat
_d2
_encip
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c10447
_d10447