000 03835cam a22003617i 4500
001 17800166
003 OSt
005 20160617143033.0
008 130703t20132013nyua b 001 0 eng d
010 _a 2013944369
020 _a9788181284495
035 _a(OCoLC)ocn861337404
040 _aIISER Bhopal
_beng
_cVBD
042 _alccopycat
050 0 0 _aQA387
_b.B76 2013
082 0 0 _a512.482 B88L
_223
100 1 _aBump, Daniel.
_96141
222 _aMathematics Collection
245 1 0 _aLie groups
_cDaniel Bump.
260 _aNew Delhi :
_bSpringer,
_c2004.
300 _axiii, 551 p. :
_bill. ;
_c25 cm.
440 _aGraduate text in mathematics;
_n225
_99646
504 _aIncludes bibliographical references (pages 535-544) and index.
505 0 0 _gPt. I:
_tCompact groups.
_tHaar measure --
_tSchur orthogonality --
_tCompact operators --
_tThe Peter-Weyl theorem --
_gpt. II:
_tLie groups fundamentals.
_tLie subgroups of GL (n,C) --
_tVector fields --
_tLeft-invariant vector fields --
_tThe exponential map --
_tTensors and universal properties --
_tThe universal enveloping algebra --
_tExtension of scalars --
_tRepresentations of s1(2,C) --
_tThe universal cover --
_tThe local Frobenius theorem --
_tTori --
_tGeodesics and maximal tori --
_tTopological proof of Cartan's theorem --
_tThe Weyl integration formula --
_tThe root system --
_tExamples of root systems --
_tAbstract Weyl groups --
_tThe fundamental group --
_tSemisimple compact groups --
_tHighest-Weight vectors --
_tThe Weyl character formula --
_tSpin --
_tComplexification --
_tCoxeter groups --
_tThe Iwasawa decomposition --
_tThe Bruhat decomposition --
_tSymmetric spaces --
_tRelative root systems --
_tEmbeddings of lie groups --
_gpt. III:
_tTopics.
_tMackey theory --
_tCharacters of GL(n,C) --
_tDuality between Sk and GL(n, C) --
_tThe Jacobi-Trudi identity --
_tSchur polynomials and GL(n,C) --
_tSchur polynomials and Sk --
_tRandom matrix theory --
_tMinors of Toeplitz matrices --
_tBranching formulae and tableaux --
_tThe Cauchy identity --
_tUnitary branching rules --
_tThe involution model for Sk --
_tSome symmetric algebras --
_tGelfand pairs --
_tHecke algebras --
_tThe philosophy of cusp forms --
_tCohomology of Grassmannians.
520 _a"This book is intended for a one year graduate course on Lie groups and Lie algebras. The author proceeds beyond the representation theory of compact Lie groups (which is the basis of many texts) and provides a carefully chosen range of material to give the student the bigger picture. For compact Lie groups, the Peter-Weyl theorem, conjugacy of maximal tori (two proofs), Weyl character formula and more are covered. The book continues with the study of complex analytic groups, then general noncompact Lie groups, including the Coxeter presentation of the Weyl group, the Iwasawa and Bruhat decompositions, Cartan decomposition, symmetric spaces, Cayley transforms, relative root systems, Satake diagrams, extended Dynkin diagrams and a survey of the ways Lie groups may be embedded in one another. The book culminates in a "topics" section giving depth to the student's understanding of representation theory, taking the Frobenius-Schur duality between the representation theory of the symmetric group and the unitary groups as a unifying theme, with many applications in diverse areas such as random matrix theory, minors of Toeplitz matrices, symmetric algebra decompositions, Gelfand pairs, Hecke algebras, representations of finite general linear groups and the cohomology of Grassmannians and flag varieties.--
650 0 _aLie groups.
_96142
650 0 _aMathematics.
_96143
830 0 _aGraduate texts in mathematics ;
_v225.
_96144
906 _a7
_bcbc
_ccopycat
_d2
_encip
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c5994
_d5994