000 02759nam a22005295i 4500
001 978-3-642-30901-4
003 DE-He213
005 20150803155057.0
007 cr nn 008mamaa
008 120913s2013 gw | s |||| 0|eng d
020 _a9783642309014
_9978-3-642-30901-4
024 7 _a10.1007/978-3-642-30901-4
_2doi
050 4 _aQA402.5-402.6
072 7 _aPBU
_2bicssc
072 7 _aMAT003000
_2bisacsh
082 0 4 _a519.6
_223
100 1 _aCegielski, Andrzej.
_eauthor.
245 1 0 _aIterative Methods for Fixed Point Problems in Hilbert Spaces
_h[electronic resource] /
_cby Andrzej Cegielski.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aXVI, 298 p. 61 illus., 3 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2057
505 0 _a1 Introduction -- 2 Algorithmic Operators -- 3 Convergence of Iterative Methods -- 4 Algorithmic Projection Operators -- 5 Projection methods.
520 _aIterative methods for finding fixed points of non-expansive operators in Hilbert spaces have been described in many publications. In this monograph we try to present the methods in a consolidated way. We introduce several classes of operators, examine their properties, define iterative methods generated by operators from these classes and present general convergence theorems. On this basis we discuss the conditions under which particular methods converge. A large part of the results presented in this monograph can be found in various forms in the literature (although several results presented here are new). We have tried, however, to show that the convergence of a large class of iteration methods follows from general properties of some classes of operators and from some general convergence theorems.
650 0 _aMathematics.
650 0 _aFunctional analysis.
650 0 _aOperator theory.
650 0 _aNumerical analysis.
650 0 _aMathematical optimization.
650 1 4 _aMathematics.
650 2 4 _aOptimization.
650 2 4 _aFunctional Analysis.
650 2 4 _aCalculus of Variations and Optimal Control; Optimization.
650 2 4 _aNumerical Analysis.
650 2 4 _aOperator Theory.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642309007
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2057
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-30901-4
912 _aZDB-2-SMA
912 _aZDB-2-LNM
999 _c6967
_d6967