000 02357cam a2200505 a 4500
001 16200025
003 OSt
005 20151005100610.0
008 100423s2010 enka b 001 0 eng
010 _a 2010927407
015 _aGBA997655
_2bnb
015 _a09,N38,0504
_2dnb
016 7 _a015386215
_2Uk
020 _a9789380250694 (pbk.)
_cRs. 325.00
028 5 2 _a12741472
035 _a(OCoLC)ocn455828013
040 _aUKM
_cUKM
_dDEBBG
_dYDXCP
_dBTCTA
_dOHX
_dCDX
_dLML
_dUKMGB
_dMNW
_dDLC
042 _alccopycat
050 0 0 _aQA166
_b.B33 2010
082 0 4 _a511.5 B228G2
_223
084 _a510
_2sdnb
084 _aMAT 055f
_2stub
084 _aMAT 150f
_2stub
084 _aSK 890
_2rvk
100 1 _aBapat, R. B.
_96824
222 _aMathematics Collection
245 1 0 _aGraphs and Matrices
_cR.B. Bapat.
250 _a2nd ed.
260 _aNew Delhi:
_bHindustan Book Agency,
_c2014.
300 _aix, 193 p. :
_bill. ;
_c25 cm.
490 1 _aUniversitext
504 _aIncludes bibliographical references (p. 165-168) and index.
505 0 _aPreliminaries -- Incidence matrix -- Adjacency matrix -- Laplacian matrix -- Cycles and cuts -- Regular graphs -- Algebraic connectivity -- Distance matrix of a tree -- Resistance distance -- Laplacian eigenvalues of threshold graphs -- Positive definite completion problem -- Matrix games based on graphs.
520 _aThis book illustrates the elegance and power of matrix techniques in the study of graphs by means of several results, both classical and recent. The emphasis on matrix techniques is greater than other standard references on algebraic graph theory, and the important matrices associated with graphs such as incidence, adjacency, and Laplacian matrices are treated in detail.
650 0 _aGraph theory.
_96825
650 0 _aMatrices.
_96826
650 0 7 _aGraphentheorie.
_2swd
_96827
650 0 7 _aMathematics
_96954
830 0 _aUniversitext.
_96828
856 _uhttp://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=018702218&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
_zInhaltsverzeichnis
906 _a7
_bcbc
_ccopycat
_d2
_encip
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c7045
_d7045