000 | 01887cam a2200337 i 4500 | ||
---|---|---|---|
001 | 19134018 | ||
003 | OSt | ||
005 | 20171115100153.0 | ||
008 | 160613t20162016maua b 001 0 eng | ||
010 | _a 2016022992 | ||
020 | _a9780262035613 (hardcover : alk. paper) | ||
020 | _a0262035618 (hardcover : alk. paper) | ||
040 |
_aIISER Bhopal _beng _cIISER Bhopal _erda |
||
042 | _apcc | ||
050 | 0 | 0 |
_aQ325.5 _b.G66 2016 |
082 | 0 | 0 |
_a006.31 G61D _223 |
100 | 1 |
_aGoodfellow, Ian _922053 |
|
222 | _aEECS-Reference book collection | ||
245 | 1 | 0 |
_aDeep learning _cIan Goodfellow, Yoshua Bengio, and Aaron Courville. |
260 |
_aCambridge: _bThe MIT Press, _c2016. |
||
300 |
_axxii, 775 pages : _billustrations (some color) ; _c24 cm. |
||
490 | 0 | _aAdaptive computation and machine learning | |
504 | _aIncludes bibliographical references (pages 711-766) and index. | ||
505 | 0 | _aApplied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models. | |
650 | 0 |
_aMachine learning, _922054 |
|
700 | 1 |
_aBengio, Yoshua _922055 |
|
700 | 1 |
_aCourville, Aaron _922056 |
|
906 |
_a7 _bcbc _corignew _d1 _eecip _f20 _gy-gencatlg |
||
942 |
_2ddc _cBK |
||
999 |
_c8269 _d8269 |