000 | 02011cam a22003857a 4500 | ||
---|---|---|---|
001 | 16913043 | ||
003 | OSt | ||
005 | 20190110121422.0 | ||
008 | 110810s2011 enk b 001 0 eng d | ||
010 | _a 2011456160 | ||
015 |
_aGBB0D0493 _2bnb |
||
020 | _a9780521474238 (v.1) | ||
035 | _a(OCoLC)ocn728078271 | ||
040 |
_aEQO _cIISER Bhopal |
||
042 | _alccopycat | ||
050 | 0 | 0 |
_aQA353.A9 _bG65 2011 |
082 | 0 | 4 |
_a515.9 G56A _223 |
100 | 1 |
_aGoldfeld, Dorian. _923920 |
|
222 | _aMathematics-reference book collection | ||
245 | 1 | 0 |
_aAutomorphic representations and L-functions for the general linear group : _cDorian Goldfeld, Joseph Hundley ; with exercises by Xander Faber. _bVolume-I |
260 |
_aCambridge : _bCambridge University Press, _c2011. |
||
300 |
_axix, 550p. _c23 cm. |
||
490 | 1 |
_aCambridge studies in advanced mathematics ; _v129 |
|
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _av. 1. Introduction. Preface 1. Adeles over Q 2. Automorphic representations and L-functions for GL(1,AQ) 3. The classical theory of automorphic forms for GL(2) 4. Automorphic forms for GL(2,AQ) 5. Automorphic representations for GL(2,AQ) 6. Theory of admissible representations of GL(2,Qp) 7. Theory of admissible (g,K[infinity]) modules for GL(2,R) 8. The contragredient representation for GL(2) 9. Unitary representations of GL(2) 10. Tensor products of local representations 11. The Godement-Jacquet L-function for GL(2,AQ). Solutions to selected exercises. References. Symbols index. Index. | |
650 | 0 |
_aAutomorphic forms. _923921 |
|
650 | 0 |
_aL-functions. _923922 |
|
650 | 0 |
_aRepresentations of groups. _923923 |
|
700 | 1 |
_aHundley, Joseph. _923924 |
|
700 | 1 |
_aFaber, Xander. _923925 |
|
830 | 0 |
_aCambridge studies in advanced mathematics ; _v129. _923926 |
|
906 |
_a7 _bcbc _ccopycat _d2 _encip _f20 _gy-gencatlg |
||
942 |
_2ddc _cBK |
||
999 |
_c8677 _d8677 |