000 04147nam a22006495i 4500
001 978-981-10-4256-0
003 DE-He213
005 20210118114613.0
007 cr nn 008mamaa
008 170505s2017 si | s |||| 0|eng d
020 _a9789811042560
_9978-981-10-4256-0
024 _a10.1007/978-981-10-4256-0
_2doi
050 _aQA184-205
072 _aPBF
_2bicssc
072 _aMAT002050
_2bisacsh
072 _aPBF
_2thema
082 _a512.5
_223
100 _aLal, Ramji.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 _aAlgebra 2
_h[electronic resource] :
_bLinear Algebra, Galois Theory, Representation theory, Group extensions and Schur Multiplier /
_cby Ramji Lal.
250 _a1st ed. 2017.
264 _aSingapore :
_bSpringer Singapore :
_bImprint: Springer,
_c2017.
300 _aXVIII, 432 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 _aInfosys Science Foundation Series in Mathematical Sciences,
_x2364-4036
505 _aChapter 1. Vector Space -- Chapter 2. Matrices and Linear Equations -- Chapter 3. Linear Transformations -- Chapter 4. Inner Product Space -- Chapter 5. Determinants and Forms -- Chapter 6. Canonical Forms, Jordan and Rational Forms -- Chapter 7. General Linear Algebra -- Chapter 8. Field Theory, Galois Theory -- Chapter 9. Representation Theory of Finite Groups -- Chapter 10. Group Extensions and Schur Multiplier.
520 _aThis is the second in a series of three volumes dealing with important topics in algebra. Volume 2 is an introduction to linear algebra (including linear algebra over rings), Galois theory, representation theory, and the theory of group extensions. The section on linear algebra (chapters 1–5) does not require any background material from Algebra 1, except an understanding of set theory. Linear algebra is the most applicable branch of mathematics, and it is essential for students of science and engineering As such, the text can be used for one-semester courses for these students. The remaining part of the volume discusses Jordan and rational forms, general linear algebra (linear algebra over rings), Galois theory, representation theory (linear algebra over group algebras), and the theory of extension of groups follow linear algebra, and is suitable as a text for the second and third year students specializing in mathematics. .
650 _aMatrix theory.
650 _aAlgebra.
650 _aAssociative rings.
650 _aRings (Algebra).
650 _aCommutative algebra.
650 _aCommutative rings.
650 _aNonassociative rings.
650 _aGroup theory.
650 _aNumber theory.
650 _aLinear and Multilinear Algebras, Matrix Theory.
_0https://scigraph.springernature.com/ontologies/product-market-codes/M11094
650 _aAssociative Rings and Algebras.
_0https://scigraph.springernature.com/ontologies/product-market-codes/M11027
650 _aCommutative Rings and Algebras.
_0https://scigraph.springernature.com/ontologies/product-market-codes/M11043
650 _aNon-associative Rings and Algebras.
_0https://scigraph.springernature.com/ontologies/product-market-codes/M11116
650 _aGroup Theory and Generalizations.
_0https://scigraph.springernature.com/ontologies/product-market-codes/M11078
650 _aNumber Theory.
_0https://scigraph.springernature.com/ontologies/product-market-codes/M25001
710 _aSpringerLink (Online service)
773 _tSpringer Nature eBook
776 _iPrinted edition:
_z9789811042553
776 _iPrinted edition:
_z9789811042577
776 _iPrinted edition:
_z9789811350894
776 _iPrinted edition:
_z9789811398612
830 _aInfosys Science Foundation Series in Mathematical Sciences,
_x2364-4036
856 _uhttps://doi.org/10.1007/978-981-10-4256-0
912 _aZDB-2-SMA
912 _aZDB-2-SXMS
999 _c9369
_d9369