000 05760cam a2200637Mi 4500
001 9780429961113
003 FlBoTFG
005 20210216124854.0
006 m o d
007 cr cn|||||||||
008 180321s2018 flu ob 001 0 eng d
040 _aOCoLC-P
_beng
_erda
_epn
_cOCoLC-P
020 _a9780429399640
_q(electronic bk.)
020 _a0429399642
_q(electronic bk.)
020 _a9780429680168
_q(electronic bk. : PDF)
020 _a0429680163
_q(electronic bk. : PDF)
020 _a9780429680151
_q(electronic bk. : EPUB)
020 _a0429680155
_q(electronic bk. : EPUB)
020 _a9780429492563
_q(e-book)
020 _a0429492561
_q(e-book)
020 _a9780429961113
_q(e-book ;
_qPDF)
020 _a0429961111
_q(e-book ;
_qPDF)
020 _a9780429680144
_q(electronic bk. : Mobipocket)
020 _a0429680147
_q(electronic bk. : Mobipocket)
020 _a9780429680151
020 _a0429680155
024 7 _a10.1201/9780429399640
_2doi
035 _a(OCoLC)1029247331
035 _a(OCoLC-P)1029247331
050 4 _aQA36
082 0 4 _a515
_223
082 1 4 _aSCMA10
082 0 4 _aSCMA10
100 1 _aStrogatz, Steven H.
_q(Steven Henry),
_eauthor.
245 1 0 _aNonlinear Dynamics and Chaos :
_bWith Applications to Physics, Biology, Chemistry, and Engineering /
_cSteven H. Strogatz.
250 _aSecond edition.
264 1 _aBoca Raton, FL :
_bCRC Press,
_c2018.
300 _a1 online resource :
_btext file, PDF.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 0 _aStudies in nonlinearity
520 2 _a"This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors."--Provided by publisher.
505 0 _aCover; Half Title; Title; Copyright; CONTENTS; Preface to the Second Edition; Preface to the First Edition; 1 Overview; 1.0 Chaos, Fractals, and Dynamics; 1.1 Capsule History of Dynamics; 1.2 The Importance of Being Nonlinear; 1.3 A Dynamical View of the World; Part I One-Dimensional Flows; 2 Flows on the Line; 2.0 Introduction; 2.1 A Geometric Way of Thinking; 2.2 Fixed Points and Stability; 2.3 Population Growth; 2.4 Linear Stability Analysis; 2.5 Existence and Uniqueness; 2.6 Impossibility of Oscillations; 2.7 Potentials; 2.8 Solving Equations on the Computer; Exercises for Chapter 2.
505 8 _a3 Bifurcations3.0 Introduction; 3.1 Saddle-Node Bifurcation; 3.2 Transcritical Bifurcation; 3.3 Laser Threshold; 3.4 Pitchfork Bifurcation; 3.5 Overdamped Bead on a Rotating Hoop; 3.6 Imperfect Bifurcations and Catastrophes; 3.7 Insect Outbreak; Exercises for Chapter 3; 4 Flows on the Circle; 4.0 Introduction; 4.1 Examples and Definitions; 4.2 Uniform Oscillator; 4.3 Nonuniform Oscillator; 4.4 Overdamped Pendulum; 4.5 Fireflies; 4.6 Superconducting Josephson Junctions; Exercises for Chapter 4; Part II Two-Dimensional Flows; 5 Linear Systems; 5.0 Introduction; 5.1 Definitions and Examples.
505 8 _a5.2 Classification of Linear Systems5.3 Love Affairs; Exercises for Chapter 5; 6 Phase Plane; 6.0 Introduction; 6.1 Phase Portraits; 6.2 Existence, Uniqueness, and Topological Consequences; 6.3 Fixed Points and Linearization; 6.4 Rabbits versus Sheep; 6.5 Conservative Systems; 6.6 Reversible Systems; 6.7 Pendulum; 6.8 Index Theory; Exercises for Chapter 6; 7 Limit Cycles; 7.0 Introduction; 7.1 Examples; 7.2 Ruling Out Closed Orbits; 7.3 Poincaré?Bendixson Theorem; 7.4 Liénard Systems; 7.5 Relaxation Oscillations; 7.6 Weakly Nonlinear Oscillators; Exercises for Chapter 7
505 8 _a8 Bifurcations Revisited8.0 Introduction; 8.1 Saddle-Node, Transcritical, and Pitchfork Bifurcations; 8.2 Hopf Bifurcations; 8.3 Oscillating Chemical Reactions; 8.4 Global Bifurcations of Cycles; 8.5 Hysteresis in the Driven Pendulum and Josephson Junction; 8.6 Coupled Oscillators and Quasiperiodicity; 8.7 Poincaré Maps; Exercises for Chapter 8; Part III Chaos; 9 Lorenz Equations; 9.0 Introduction; 9.1 A Chaotic Waterwheel; 9.2 Simple Properties of the Lorenz Equations; 9.3 Chaos on a Strange Attractor; 9.4 Lorenz Map; 9.5 Exploring Parameter Space; 9.6 Using Chaos to Send Secret Messages.
505 8 _aExercises for Chapter 910 One-Dimensional Maps; 10.0 Introduction; 10.1 Fixed Points and Cobwebs; 10.2 Logistic Map: Numerics; 10.3 Logistic Map: Analysis; 10.4 Periodic Windows; 10.5 Liapunov Exponent; 10.6 Universality and Experiments; 10.7 Renormalization; Exercises for Chapter 10; 11 Fractals; 11.0 Introduction; 11.1 Countable and Uncountable Sets; 11.2 Cantor Set; 11.3 Dimension of Self-Similar Fractals; 11.4 Box Dimension; 11.5 Pointwise and Correlation Dimensions; Exercises for Chapter 11; 12 Strange Attractors; 12.0 Introduction; 12.1 The Simplest Examples; 12.2 Hénon Map.
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aMathematics.
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9780429961113
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9780429492563
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9780429399640
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
938 _aTaylor & Francis
_bTAFR
_n9780429492563
999 _c9407
_d9407