000 | 03961nam a22004935i 4500 | ||
---|---|---|---|
001 | 978-1-4684-9443-3 | ||
003 | DE-He213 | ||
005 | 20210602114659.0 | ||
007 | cr nn 008mamaa | ||
008 | 121227s1975 xxu| s |||| 0|eng d | ||
020 |
_a9781468494433 _9978-1-4684-9443-3 |
||
024 | 7 |
_a10.1007/978-1-4684-9443-3 _2doi |
|
050 | 4 | _aQA174-183 | |
072 | 7 |
_aPBG _2bicssc |
|
072 | 7 |
_aMAT002010 _2bisacsh |
|
072 | 7 |
_aPBG _2thema |
|
082 | 0 | 4 |
_a512.2 _223 |
100 | 1 |
_aHumphreys, James E. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
245 | 1 | 0 |
_aLinear Algebraic Groups _h[electronic resource] / _cby James E. Humphreys. |
250 | _a1st ed. 1975. | ||
264 | 1 |
_aNew York, NY : _bSpringer New York : _bImprint: Springer, _c1975. |
|
300 |
_aXVI, 248 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aGraduate Texts in Mathematics, _x0072-5285 ; _v21 |
|
505 | 0 | _aI. Algebraic Geometry -- 0. Some Commutative Algebra -- 1. Affine and Projective Varieties -- 2. Varieties -- 3. Dimension -- 4. Morphisms -- 5. Tangent Spaces -- 6. Complete Varieties -- II. Affine Algebraic Groups -- 7. Basic Concepts and Examples -- 8. Actions of Algebraic Groups on Varieties -- III. Lie Algebras -- 9. Lie Algebra of an Algebraic Group -- 10. Differentiation -- IV. Homogeneous Spaces -- 11. Construction of Certain Representations -- 12. Quotients -- V. Characteristic 0 Theory -- 13. Correspondence between Groups and Lie Algebras -- 14. Semisimple Groups -- VI. Semisimple and Unipotent Elements -- 15. Jordan-Chevalley Decomposition -- 16. Diagonalizable Groups -- VII. Solvable Groups -- 17. Nilpotent and Solvable Groups -- 18. Semisimple Elements -- 19. Connected Solvable Groups -- 20. One Dimensional Groups -- VIII. Borel Subgroups -- 21. Fixed Point and Conjugacy Theorems -- 22. Density and Connectedness Theorems -- 23. Normalizer Theorem -- IX. Centralizers of Tori -- 24. Regular and Singular Tori -- 25. Action of a Maximal Torus on G/? -- 26. The Unipotent Radical -- X. Structure of Reductive Groups -- 27. The Root System -- 28. Bruhat Decomposition -- 29. Tits Systems -- 30. Parabolic Subgroups -- XI. Representations and Classification of Semisimple Groups -- 31. Representations -- 32. Isomorphism Theorem -- 33. Root Systems of Rank 2 -- XII. Survey of Rationality Properties -- 34. Fields of Definition -- 35. Special Cases -- Appendix. Root Systems -- Index of Terminology -- Index of Symbols. | |
520 | _aJames E. Humphreys is presently Professor of Mathematics at the University of Massachusetts at Amherst. Before this, he held the posts of Assistant Professor of Mathematics at the University of Oregon and Associate Professor of Mathematics at New York University. His main research interests include group theory and Lie algebras. He graduated from Oberlin College in 1961. He did graduate work in philosophy and mathematics at Cornell University and later received hi Ph.D. from Yale University if 1966. In 1972, Springer-Verlag published his first book, "Introduction to Lie Algebras and Representation Theory" (graduate Texts in Mathematics Vol. 9). | ||
650 | 0 | _aGroup theory. | |
650 | 1 | 4 |
_aGroup Theory and Generalizations. _0https://scigraph.springernature.com/ontologies/product-market-codes/M11078 |
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9781468494457 |
776 | 0 | 8 |
_iPrinted edition: _z9780387901084 |
776 | 0 | 8 |
_iPrinted edition: _z9781468494440 |
830 | 0 |
_aGraduate Texts in Mathematics, _x0072-5285 ; _v21 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-1-4684-9443-3 |
912 | _aZDB-2-SMA | ||
912 | _aZDB-2-SXMS | ||
912 | _aZDB-2-BAE | ||
999 |
_c9427 _d9427 |