000 04410cam a2200649Ki 4500
001 ocn893872840
003 OCoLC
005 20210602115007.0
006 m o d
007 cr cnu---unuuu
008 141027s1990 mau ob 001 0 eng d
040 _aOPELS
_beng
_erda
_epn
_cOPELS
_dN$T
_dE7B
_dEBLCP
_dNLGGC
_dDEBSZ
_dOCLCQ
_dYDXCP
_dMERUC
_dOCLCQ
_dOCLCO
_dOCLCQ
_dUMK
_dOCLCO
_dOCLCQ
_dVLY
_dLUN
_dOCLCQ
019 _a893875000
_a898771737
_a935246831
_a1162033946
020 _a9780080924960
_q(electronic bk.)
020 _a0080924964
_q(electronic bk.)
020 _z0125113609
020 _z9780125113601
020 _a1493301640
020 _a9781493301645
035 _a(OCoLC)893872840
_z(OCoLC)893875000
_z(OCoLC)898771737
_z(OCoLC)935246831
_z(OCoLC)1162033946
050 4 _aQA326
_b.M87 1990eb
072 7 _aMAT
_x002040
_2bisacsh
082 0 4 _a512/.55
_222
084 _a*46Lxx
_2msc
084 _a46-02
_2msc
084 _a46H05
_2msc
084 _a46M20
_2msc
084 _a47C15
_2msc
100 1 _aMurphy, Gerard J.
245 1 0 _aC*-algebras and operator theory /
_cGerard J. Murphy.
264 1 _aBoston :
_bAcademic Press,
_c�1990.
300 _a1 online resource (x, 286 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references (page 279.280) and index.
520 _aThis book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
588 0 _aPrint version record.
505 0 _aFront Cover ; C*-Algebras and Operator Theory; Copyright Page; Table of Contents; Preface; Chapter 1. Elementary Spectral Theory; 1.1. Banach Algebras; 1.2. The Spectrum and the Spectral Radius; 1.3. The Gelfand Representation; 1.4. Compact and Fredholm Operators; Exercises; Addenda; Chapter 2. C*-Algebras and Hilbert Space Operators; 2.1. C*-Algebras; 2.2. Positive Elements of C*-Algebras; 2.3. Operators and Sesquilinear Forms; 2.4. Compact Hilbert Space Operators; 2.5. The Spectral Theorem; Exercises; Addenda; Chapter 3. Ideals and Positive Functionals; 3.1. Ideals in C*-Algebras.
505 8 _a3.2. Hereditary C*-Subalgebras3.3. Positive Linear Functionals; 3.4. The Gelfand-Naimark Representation; 3.5. Toeplitz Operators; Exercises; Addenda; Chapter 4. Von Neumann Algebras; 4.1. The Double Commutant Theorem; 4.2. The Weak and Ultraweak Topologies; 4.3. The Kaplansky Density Theorem; 4.4. Abelian Von Neumann Algebras; Exercises; Addenda; Chapter 5. Representations of C*-Algebras; 5.1. Irreducible Representations and Pure States; 5.2. The Transitivity Theorem; 5.3. Left Ideals of C*-Algebras; 5.4. Primitive Ideals; 5.5. Extensions and Restrictions of Representations.
505 8 _a5.6. Liminal and Postliminal C*-AlgebrasExercises; Addenda; Chapter 6. Direct Limits and Tensor Products; 6.1. Direct Limits of C*-Algebras; 6.2. Uniformly Hyperfinite Algebras; 6.3. Tensor Products of C*-Algebras; 6.4. Minimality of the Spatial C*-Norm; 6.5. Nuclear C*-Algebras and Short Exact Sequences; Exercises; Addenda; Chapter 7. K-Theory of C*-Algebras; 7.1. Elements of K-Theory; 7.2. The K-Theory of AF-Algebras; 7.3. Three Fundamental Results in K-Theory; 7.4. Stability; 7.5. Bott Periodicity; Exercises; Addenda; Appendix; Notes; References; Notation Index; Subject Index.
546 _aEnglish.
650 0 _aC*-algebras.
650 0 _aOperator theory.
650 6 _aC*-alg�ebres.
650 6 _aOp�erateurs, Th�eorie des.
650 7 _aMATHEMATICS
_xAlgebra
_xIntermediate.
_2bisacsh
650 7 _aC*-algebras.
_2fast
_0(OCoLC)fst00843285
650 7 _aOperator theory.
_2fast
_0(OCoLC)fst01046419
650 7 _aC-Stern-Algebra
_2gnd
_0(DE-588)4136693-1
650 7 _aOperatortheorie
_2gnd
_0(DE-588)4075665-8
650 7 _aC
_xalg�ebres.
_2ram
650 7 _aOp�erateurs, th�eorie des.
_2ram
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aMurphy, Gerard J.
_tC*-algebras and operator theory
_z0125113609
_w(DLC) 90000524
_w(OCoLC)21408122
856 4 0 _3ScienceDirect
_uhttps://www.sciencedirect.com/science/book/9780080924960
999 _c9443
_d9443