000 | 05760cam a2200637Mi 4500 | ||
---|---|---|---|
001 | 9780429961113 | ||
003 | FlBoTFG | ||
005 | 20210921153247.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 180321s2018 flu ob 001 0 eng d | ||
040 |
_aOCoLC-P _beng _erda _epn _cOCoLC-P |
||
020 |
_a9780429399640 _q(electronic bk.) |
||
020 |
_a0429399642 _q(electronic bk.) |
||
020 |
_a9780429680168 _q(electronic bk. : PDF) |
||
020 |
_a0429680163 _q(electronic bk. : PDF) |
||
020 |
_a9780429680151 _q(electronic bk. : EPUB) |
||
020 |
_a0429680155 _q(electronic bk. : EPUB) |
||
020 |
_a9780429492563 _q(e-book) |
||
020 |
_a0429492561 _q(e-book) |
||
020 |
_a9780429961113 _q(e-book ; _qPDF) |
||
020 |
_a0429961111 _q(e-book ; _qPDF) |
||
020 |
_a9780429680144 _q(electronic bk. : Mobipocket) |
||
020 |
_a0429680147 _q(electronic bk. : Mobipocket) |
||
020 | _a9780429680151 | ||
020 | _a0429680155 | ||
024 | 7 |
_a10.1201/9780429399640 _2doi |
|
035 | _a(OCoLC)1029247331 | ||
035 | _a(OCoLC-P)1029247331 | ||
050 | 4 | _aQA36 | |
082 | 0 | 4 |
_a515 _223 |
082 | 1 | 4 | _aSCMA10 |
082 | 0 | 4 | _aSCMA10 |
100 | 1 |
_aStrogatz, Steven H. _q(Steven Henry), _eauthor. |
|
245 | 1 | 0 |
_aNonlinear Dynamics and Chaos : _bWith Applications to Physics, Biology, Chemistry, and Engineering / _cSteven H. Strogatz. |
250 | _aSecond edition. | ||
264 | 1 |
_aBoca Raton, FL : _bCRC Press, _c2018. |
|
300 |
_a1 online resource : _btext file, PDF. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 0 | _aStudies in nonlinearity | |
520 | 2 | _a"This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors."--Provided by publisher. | |
505 | 0 | _aCover; Half Title; Title; Copyright; CONTENTS; Preface to the Second Edition; Preface to the First Edition; 1 Overview; 1.0 Chaos, Fractals, and Dynamics; 1.1 Capsule History of Dynamics; 1.2 The Importance of Being Nonlinear; 1.3 A Dynamical View of the World; Part I One-Dimensional Flows; 2 Flows on the Line; 2.0 Introduction; 2.1 A Geometric Way of Thinking; 2.2 Fixed Points and Stability; 2.3 Population Growth; 2.4 Linear Stability Analysis; 2.5 Existence and Uniqueness; 2.6 Impossibility of Oscillations; 2.7 Potentials; 2.8 Solving Equations on the Computer; Exercises for Chapter 2. | |
505 | 8 | _a3 Bifurcations3.0 Introduction; 3.1 Saddle-Node Bifurcation; 3.2 Transcritical Bifurcation; 3.3 Laser Threshold; 3.4 Pitchfork Bifurcation; 3.5 Overdamped Bead on a Rotating Hoop; 3.6 Imperfect Bifurcations and Catastrophes; 3.7 Insect Outbreak; Exercises for Chapter 3; 4 Flows on the Circle; 4.0 Introduction; 4.1 Examples and Definitions; 4.2 Uniform Oscillator; 4.3 Nonuniform Oscillator; 4.4 Overdamped Pendulum; 4.5 Fireflies; 4.6 Superconducting Josephson Junctions; Exercises for Chapter 4; Part II Two-Dimensional Flows; 5 Linear Systems; 5.0 Introduction; 5.1 Definitions and Examples. | |
505 | 8 | _a5.2 Classification of Linear Systems5.3 Love Affairs; Exercises for Chapter 5; 6 Phase Plane; 6.0 Introduction; 6.1 Phase Portraits; 6.2 Existence, Uniqueness, and Topological Consequences; 6.3 Fixed Points and Linearization; 6.4 Rabbits versus Sheep; 6.5 Conservative Systems; 6.6 Reversible Systems; 6.7 Pendulum; 6.8 Index Theory; Exercises for Chapter 6; 7 Limit Cycles; 7.0 Introduction; 7.1 Examples; 7.2 Ruling Out Closed Orbits; 7.3 Poincaré?Bendixson Theorem; 7.4 Liénard Systems; 7.5 Relaxation Oscillations; 7.6 Weakly Nonlinear Oscillators; Exercises for Chapter 7 | |
505 | 8 | _a8 Bifurcations Revisited8.0 Introduction; 8.1 Saddle-Node, Transcritical, and Pitchfork Bifurcations; 8.2 Hopf Bifurcations; 8.3 Oscillating Chemical Reactions; 8.4 Global Bifurcations of Cycles; 8.5 Hysteresis in the Driven Pendulum and Josephson Junction; 8.6 Coupled Oscillators and Quasiperiodicity; 8.7 Poincaré Maps; Exercises for Chapter 8; Part III Chaos; 9 Lorenz Equations; 9.0 Introduction; 9.1 A Chaotic Waterwheel; 9.2 Simple Properties of the Lorenz Equations; 9.3 Chaos on a Strange Attractor; 9.4 Lorenz Map; 9.5 Exploring Parameter Space; 9.6 Using Chaos to Send Secret Messages. | |
505 | 8 | _aExercises for Chapter 910 One-Dimensional Maps; 10.0 Introduction; 10.1 Fixed Points and Cobwebs; 10.2 Logistic Map: Numerics; 10.3 Logistic Map: Analysis; 10.4 Periodic Windows; 10.5 Liapunov Exponent; 10.6 Universality and Experiments; 10.7 Renormalization; Exercises for Chapter 10; 11 Fractals; 11.0 Introduction; 11.1 Countable and Uncountable Sets; 11.2 Cantor Set; 11.3 Dimension of Self-Similar Fractals; 11.4 Box Dimension; 11.5 Pointwise and Correlation Dimensions; Exercises for Chapter 11; 12 Strange Attractors; 12.0 Introduction; 12.1 The Simplest Examples; 12.2 Hénon Map. | |
588 | _aOCLC-licensed vendor bibliographic record. | ||
650 | 0 | _aMathematics. | |
856 | 4 | 0 |
_3Taylor & Francis _uhttps://www.taylorfrancis.com/books/9780429961113 |
856 | 4 | 0 |
_3Taylor & Francis _uhttps://www.taylorfrancis.com/books/9780429492563 |
856 | 4 | 0 |
_3Taylor & Francis _uhttps://www.taylorfrancis.com/books/9780429399640 |
856 | 4 | 2 |
_3OCLC metadata license agreement _uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf |
938 |
_aTaylor & Francis _bTAFR _n9780429492563 |
||
999 |
_c9499 _d9499 |