000 01553cam a2200313 i 4500
001 20515853
003 OSt
005 20211012150848.0
008 180525s2018 maua b 001 0 eng
010 _a 2018023826
020 _a9780262039246 (hardcover : alk. paper)
040 _aDLC
_beng
_cIISERB
_erda
_dDLC
042 _apcc
050 0 0 _aQ325.6
_b.R45 2018
082 0 0 _a006.31 So7R2
_223
100 1 _aSutton, Richard S.
_eauthor.
_927364
245 1 0 _aReinforcement learning :
_ban introduction
_cRichard S. Sutton and Andrew G. Barto.
250 _aSecond edition.
260 _aCambridge:
_bThe MIT Press,
_c2020.
300 _axxii, 526 pages :
_billustrations (some color) ;
_c24 cm.
490 0 _aAdaptive computation and machine learning series
504 _aIncludes bibliographical references (pages 481-518) and index.
520 _a"Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms."--
650 0 _aReinforcement learning.
_927365
700 1 _aBarto, Andrew G.
_eauthor.
_927366
906 _a7
_bcbc
_corignew
_d1
_eecip
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c9591
_d9591