000 02156cam a22003975i 4500
001 21734028
003 OSt
005 20220308145812.0
006 m |o d |
007 cr |||||||||||
008 190225s2019 si |||| o |||| 0|eng
010 _a 2019751741
020 _a9789386279774 (Pbk)
024 7 _a10.1007/978-981-13-6678-9
_2doi
035 _a(DE-He213)978-981-13-6678-9
040 _aDLC
_beng
_epn
_erda
_cIISERB
072 7 _aMAT034000
_2bisacsh
072 7 _aPBKL
_2bicssc
072 7 _aPBKL
_2thema
082 0 4 _a515.42 K48M
_223
100 1 _aKesavan, S.
_928185
245 1 0 _aMeasure and Integration
_cby S. Kesavan.
260 _aNew Delhi:
_bHindustan Book Agency,
_c2019.
300 _axii, 239 p.
490 1 _aTexts and Readings in Mathematics,
_x77
505 0 _aChapter 1. Measure -- Chapter 2. The Lebesgue measure -- Chapter 3. Measurable functions -- Chapter 4. Convergence -- Chapter 5. Integration -- Chapter 6. Differentiation -- Chapter 7. Change of variable -- Chapter 8. Product spaces -- Chapter 9. Signed measures -- Chapter 10. Lp spaces.
520 _aThis book deals with topics on the theory of measure and integration. It starts with discussion on the Riemann integral and points out certain shortcomings, which motivate the theory of measure and the Lebesgue integral. Most of the material in this book can be covered in a one-semester introductory course. An awareness of basic real analysis and elementary topological notions, with special emphasis on the topology of the n-dimensional Euclidean space, is the pre-requisite for this book. Each chapter is provided with a variety of exercises for the students. The book is targeted to students of graduate- and advanced-graduate-level courses on the theory of measure and integration.
650 0 _aFunctional analysis.
_928186
650 0 _aMeasure theory.
_928187
650 1 4 _aMeasure and Integration.
_928188
650 2 4 _aFunctional Analysis.
_928189
776 0 8 _iPrinted edition:
_z9789811366796
830 0 _aTexts and Readings in Mathematics,
_928190
906 _a0
_bibc
_corigres
_du
_encip
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c9758
_d9758