Lie groups (Record no. 5994)

MARC details
000 -LEADER
fixed length control field 03835cam a22003617i 4500
001 - CONTROL NUMBER
control field 17800166
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20160617143033.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 130703t20132013nyua b 001 0 eng d
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2013944369
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9788181284495
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)ocn861337404
040 ## - CATALOGING SOURCE
Original cataloging agency IISER Bhopal
Language of cataloging eng
Transcribing agency VBD
042 ## - AUTHENTICATION CODE
Authentication code lccopycat
050 00 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA387
Item number .B76 2013
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 512.482 B88L
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Bump, Daniel.
9 (RLIN) 6141
222 ## - KEY TITLE
Key title Mathematics Collection
245 10 - TITLE STATEMENT
Title Lie groups
Statement of responsibility, etc Daniel Bump.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc New Delhi :
Name of publisher, distributor, etc Springer,
Date of publication, distribution, etc 2004.
300 ## - PHYSICAL DESCRIPTION
Extent xiii, 551 p. :
Other physical details ill. ;
Dimensions 25 cm.
440 ## - SERIES STATEMENT/ADDED ENTRY--TITLE
Title Graduate text in mathematics;
Number of part/section of a work 225
9 (RLIN) 9646
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references (pages 535-544) and index.
505 00 - FORMATTED CONTENTS NOTE
Miscellaneous information Pt. I:
Title Compact groups.
-- Haar measure --
-- Schur orthogonality --
-- Compact operators --
-- The Peter-Weyl theorem --
Miscellaneous information pt. II:
Title Lie groups fundamentals.
-- Lie subgroups of GL (n,C) --
-- Vector fields --
-- Left-invariant vector fields --
-- The exponential map --
-- Tensors and universal properties --
-- The universal enveloping algebra --
-- Extension of scalars --
-- Representations of s1(2,C) --
-- The universal cover --
-- The local Frobenius theorem --
-- Tori --
-- Geodesics and maximal tori --
-- Topological proof of Cartan's theorem --
-- The Weyl integration formula --
-- The root system --
-- Examples of root systems --
-- Abstract Weyl groups --
-- The fundamental group --
-- Semisimple compact groups --
-- Highest-Weight vectors --
-- The Weyl character formula --
-- Spin --
-- Complexification --
-- Coxeter groups --
-- The Iwasawa decomposition --
-- The Bruhat decomposition --
-- Symmetric spaces --
-- Relative root systems --
-- Embeddings of lie groups --
Miscellaneous information pt. III:
Title Topics.
-- Mackey theory --
-- Characters of GL(n,C) --
-- Duality between Sk and GL(n, C) --
-- The Jacobi-Trudi identity --
-- Schur polynomials and GL(n,C) --
-- Schur polynomials and Sk --
-- Random matrix theory --
-- Minors of Toeplitz matrices --
-- Branching formulae and tableaux --
-- The Cauchy identity --
-- Unitary branching rules --
-- The involution model for Sk --
-- Some symmetric algebras --
-- Gelfand pairs --
-- Hecke algebras --
-- The philosophy of cusp forms --
-- Cohomology of Grassmannians.
520 ## - SUMMARY, ETC.
Summary, etc "This book is intended for a one year graduate course on Lie groups and Lie algebras. The author proceeds beyond the representation theory of compact Lie groups (which is the basis of many texts) and provides a carefully chosen range of material to give the student the bigger picture. For compact Lie groups, the Peter-Weyl theorem, conjugacy of maximal tori (two proofs), Weyl character formula and more are covered. The book continues with the study of complex analytic groups, then general noncompact Lie groups, including the Coxeter presentation of the Weyl group, the Iwasawa and Bruhat decompositions, Cartan decomposition, symmetric spaces, Cayley transforms, relative root systems, Satake diagrams, extended Dynkin diagrams and a survey of the ways Lie groups may be embedded in one another. The book culminates in a "topics" section giving depth to the student's understanding of representation theory, taking the Frobenius-Schur duality between the representation theory of the symmetric group and the unitary groups as a unifying theme, with many applications in diverse areas such as random matrix theory, minors of Toeplitz matrices, symmetric algebra decompositions, Gelfand pairs, Hecke algebras, representations of finite general linear groups and the cohomology of Grassmannians and flag varieties.--
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Lie groups.
9 (RLIN) 6142
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Mathematics.
9 (RLIN) 6143
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Graduate texts in mathematics ;
Volume number/sequential designation 225.
9 (RLIN) 6144
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 7
b cbc
c copycat
d 2
e ncip
f 20
g y-gencatlg
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Shelving location Date acquired Total Checkouts Total Renewals Full call number Barcode Date last seen Date checked out Copy number Cost, replacement price Price effective from Koha item type
    Dewey Decimal Classification     Central Library, IISER Bhopal Central Library, IISER Bhopal   23/09/2013 11 1 512.482 B88L 0191 09/02/2024 09/02/2024 1 0.00 23/09/2013 Books



Contact for Queries: skpathak@iiserb.ac.in