Local cover image
Local cover image
Image from Google Jackets

Lie groups Daniel Bump.

By: Series: Graduate text in mathematics. 225 | Graduate texts in mathematics ; 225.Publication details: New Delhi : Springer, 2004.Description: xiii, 551 p. : ill. ; 25 cmISBN:
  • 9788181284495
Subject(s): DDC classification:
  • 512.482 B88L 23
LOC classification:
  • QA387 .B76 2013
Contents:
Pt. I: Compact groups. Haar measure -- Schur orthogonality -- Compact operators -- The Peter-Weyl theorem -- pt. II: Lie groups fundamentals. Lie subgroups of GL (n,C) -- Vector fields -- Left-invariant vector fields -- The exponential map -- Tensors and universal properties -- The universal enveloping algebra -- Extension of scalars -- Representations of s1(2,C) -- The universal cover -- The local Frobenius theorem -- Tori -- Geodesics and maximal tori -- Topological proof of Cartan's theorem -- The Weyl integration formula -- The root system -- Examples of root systems -- Abstract Weyl groups -- The fundamental group -- Semisimple compact groups -- Highest-Weight vectors -- The Weyl character formula -- Spin -- Complexification -- Coxeter groups -- The Iwasawa decomposition -- The Bruhat decomposition -- Symmetric spaces -- Relative root systems -- Embeddings of lie groups -- pt. III: Topics. Mackey theory -- Characters of GL(n,C) -- Duality between Sk and GL(n, C) -- The Jacobi-Trudi identity -- Schur polynomials and GL(n,C) -- Schur polynomials and Sk -- Random matrix theory -- Minors of Toeplitz matrices -- Branching formulae and tableaux -- The Cauchy identity -- Unitary branching rules -- The involution model for Sk -- Some symmetric algebras -- Gelfand pairs -- Hecke algebras -- The philosophy of cusp forms -- Cohomology of Grassmannians.
Summary: "This book is intended for a one year graduate course on Lie groups and Lie algebras. The author proceeds beyond the representation theory of compact Lie groups (which is the basis of many texts) and provides a carefully chosen range of material to give the student the bigger picture. For compact Lie groups, the Peter-Weyl theorem, conjugacy of maximal tori (two proofs), Weyl character formula and more are covered. The book continues with the study of complex analytic groups, then general noncompact Lie groups, including the Coxeter presentation of the Weyl group, the Iwasawa and Bruhat decompositions, Cartan decomposition, symmetric spaces, Cayley transforms, relative root systems, Satake diagrams, extended Dynkin diagrams and a survey of the ways Lie groups may be embedded in one another. The book culminates in a "topics" section giving depth to the student's understanding of representation theory, taking the Frobenius-Schur duality between the representation theory of the symmetric group and the unitary groups as a unifying theme, with many applications in diverse areas such as random matrix theory, minors of Toeplitz matrices, symmetric algebra decompositions, Gelfand pairs, Hecke algebras, representations of finite general linear groups and the cohomology of Grassmannians and flag varieties.--
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Copy number Status Date due Barcode
Books Books Central Library, IISER Bhopal 512.482 B88L (Browse shelf(Opens below)) 1 Available 0191

Includes bibliographical references (pages 535-544) and index.

Pt. I: Compact groups. Haar measure -- Schur orthogonality -- Compact operators -- The Peter-Weyl theorem -- pt. II: Lie groups fundamentals. Lie subgroups of GL (n,C) -- Vector fields -- Left-invariant vector fields -- The exponential map -- Tensors and universal properties -- The universal enveloping algebra -- Extension of scalars -- Representations of s1(2,C) -- The universal cover -- The local Frobenius theorem -- Tori -- Geodesics and maximal tori -- Topological proof of Cartan's theorem -- The Weyl integration formula -- The root system -- Examples of root systems -- Abstract Weyl groups -- The fundamental group -- Semisimple compact groups -- Highest-Weight vectors -- The Weyl character formula -- Spin -- Complexification -- Coxeter groups -- The Iwasawa decomposition -- The Bruhat decomposition -- Symmetric spaces -- Relative root systems -- Embeddings of lie groups -- pt. III: Topics. Mackey theory -- Characters of GL(n,C) -- Duality between Sk and GL(n, C) -- The Jacobi-Trudi identity -- Schur polynomials and GL(n,C) -- Schur polynomials and Sk -- Random matrix theory -- Minors of Toeplitz matrices -- Branching formulae and tableaux -- The Cauchy identity -- Unitary branching rules -- The involution model for Sk -- Some symmetric algebras -- Gelfand pairs -- Hecke algebras -- The philosophy of cusp forms -- Cohomology of Grassmannians.

"This book is intended for a one year graduate course on Lie groups and Lie algebras. The author proceeds beyond the representation theory of compact Lie groups (which is the basis of many texts) and provides a carefully chosen range of material to give the student the bigger picture. For compact Lie groups, the Peter-Weyl theorem, conjugacy of maximal tori (two proofs), Weyl character formula and more are covered. The book continues with the study of complex analytic groups, then general noncompact Lie groups, including the Coxeter presentation of the Weyl group, the Iwasawa and Bruhat decompositions, Cartan decomposition, symmetric spaces, Cayley transforms, relative root systems, Satake diagrams, extended Dynkin diagrams and a survey of the ways Lie groups may be embedded in one another. The book culminates in a "topics" section giving depth to the student's understanding of representation theory, taking the Frobenius-Schur duality between the representation theory of the symmetric group and the unitary groups as a unifying theme, with many applications in diverse areas such as random matrix theory, minors of Toeplitz matrices, symmetric algebra decompositions, Gelfand pairs, Hecke algebras, representations of finite general linear groups and the cohomology of Grassmannians and flag varieties.--

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image



Contact for Queries: skpathak@iiserb.ac.in